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SUMMARY

A grid deformation technique is presented here based on a transfinite interpolation algorithm applied to
the grid displacements. The method, tested using a two-dimensional flow solver that uses an implicit
dual-time method for the solution of the unsteady Euler equations on deforming grids, is applicable to
problems with time varying geometries arising from aeroelasticity and free surface marine problems. The
present work is placed into a multi-block framework and fits into the development of a generally
applicable parallel multi-block flow solver. The effect of grid deformation is examined and comparison
with rigidly rotated grids is made for a series of pitching aerofoil test cases selected from the AGARD
aeroelastic configurations for the NACA0012 aerofoil. The effect of using a geometric conservation law
is also examined. Finally, a demonstration test case for the Williams aerofoil with an oscillating flap is
presented, showing the capability of the grid deformation technique. Copyright © 2000 John Wiley &
Sons, Ltd.

KEY WORDS: Euler equations; unsteady flows; grid deformation; transfinite interpolation; geometric
conservation law; multi-block grids

1. INTRODUCTION

An important issue in the development of a computational fluid dynamic (CFD) tool aimed at
practical engineering application is its ability to handle complex geometries. The improvement
in numerical algorithms, along with increasing computing power, has led to a number of
numerical methods with a sufficient level of maturity and reliability to make the solution of the
Reynolds-averaged Navier–Stokes equations (within the limitations of turbulence modelling)
possible for a wide range of flow problems. However, due to the level of difficulty associated
with the grid generation process for complex multi-component configurations, simulations are
often restricted to relatively simple geometries. At present, computational tools that combine
good flexibility and generality in terms of complex geometries with accurate and efficient flow
solvers are still rare.
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The grid generation issue is of crucial importance when considering complex geometries.
Amongst the most commonly used approaches are the structured grid approach and the
unstructured grid approach. Structured grids allow relatively easy implementation and calcula-
tion management, but have the disadvantage that grid generation is considerably more difficult
for complex geometries, as single block structured grids can only be created on domains that
can be mapped onto rectangular parametric space. Alternatively, the unstructured grid
approach is more flexible from the point of view of grid generation since no constraints exist
on the point connectivity. However, this results in a more complex flow solution and data
structure.

A useful compromise between the two approaches is provided by the multi-block technique
[1,2]. The multi-block grid consists of an unstructured arrangement of structured grids, where
the generation of each structured block is made easier by the partitioning of the computational
domain. The multi-block approach allows an extension of the methodologies developed for
single-block structured grids. The block decomposition also provides a natural partition of the
problem for parallel processing. Examples in the literature of successful applications of
multi-block methods for complex geometries are for supersonic air-intakes [3], wing–fuselage
configurations [4], shuttle re-entry vehicles [5], general aircraft design problems [6], supersonic
internal/external flow interactions [7], multi-element aerofoils [8], twin-jet transport aircraft [9]
and complex missile shapes [10]. However, the generation of multi-block structured grids,
although based on single-block algorithms, is still a relatively difficult and time-consuming
task, especially for the three-dimensional case.

Grid movement becomes an important issue when solving unsteady problems where the
mesh has to conform to the instantaneous shape of a deforming body. In most cases (e.g.
single aerofoils), rigid body motions can easily be treated by moving the mesh rigidly in
response to the motion of the body. However, this approach is no longer applicable if the body
deforms as in an aeroelastic problem, if the outer boundaries of the mesh are fixed multi-block
boundaries or if the relative motion of a multi-component configuration is to be taken into
account (e.g. an oscillating flap). To tackle such problems, efficient grid regeneration or
movement techniques are required.

A number of methods exist for deforming the grid, e.g. methods based on a spring analogy
[11], but they generally involve either a complete regeneration of the mesh around a deformed
geometry or require the solution of a large system of equations for the displacements. This
approach has efficiency drawbacks in the context of an unsteady flow simulation, when the
grid deformation process must be cheap, ideally taking only a small fraction of the overall
CPU time required by the flow solver.

Algebraic techniques are generally quicker than methods based on partial differential
equations, but at the expense of grid quality. A technique based on transfinite interpolation
(TFI) was used in [12] to regenerate at each time step the mesh around a single aerofoil
undergoing an oscillating pitching motion. The same strategy was also employed in the case of
an oscillating trailing edge flap [13], and in [14] was extended to the three-dimensional case for
unsteady wing problems.

In the work presented here, a moving mesh technique allowing more general deformations
around more complex geometries is described. The method uses the TFI algorithm based on
a multi-dimensional interpolation of the grid point displacements and is incorporated within a
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multi-block environment. The advantage of using interpolated displacements rather than
regenerating the grid completely is that it allows the overall quality of the original grid to be
retained. The method can be seen as a perturbation method rather than a complete regenera-
tion method. Also, the method is independent of the technique employed to create the initial
grid.

In Section 2, a brief description of the flow solution algorithm is given. In Section 3, the
formulation of the geometric conservation law used to compute the cell areas on deforming
meshes is recalled. Section 4 highlights the need for a deforming grid technique when using
multi-block meshes and Section 5 gives a detailed description of the TFI method of perturba-
tion used here to deform the mesh. Finally, Sections 6 and 7 show some results for two types
of problems: an NACA0012 aerofoil in pitching oscillation and a multi-element aerofoil with
an oscillating flap.

2. FLOW SOLUTION

The two-dimensional Euler equations in Cartesian co-ordinates (x, y) can be written in
non-dimensional conservative form as
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In the above equations, r, u, 6, p and E denote the density, the two Cartesian components of
the velocity, the pressure and the specific total energy respectively. The terms U and V are the
contravariant velocities, which are defined by
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U=u−xt, V=6−yt,

where xt and yt are the grid speeds in the x- and y-directions respectively.
The equations are discretized using a cell-centred finite volume method that transforms the

partial differential equations into a set of ordinary differential equations, which can be written
as

(

(t
(Vi, jWi, j)+Ri, j(W)=0, (2)

where t is the time, Wi,j is the vector of conservative variables, Vi,j is the control volume and
Ri,j(W) is the flux residual for the cell (i, j ) that contains all the terms arising from the spatial
discretization. The convective fluxes are discretized using the Osher upwind flux difference
splitting (FDS) scheme together with a monotone upstream-centred scheme for conservation
laws (MUSCL) variable extrapolation to provide second- or third-order accuracy in space. The
Van Albada limiter is used to ensure monotonic solutions around shock waves. Finally, the
far-field boundary conditions are treated by the characteristic boundary method based on the
Riemann invariants.

An unfactored implicit method is used to solve Equation (2). The method combines a
dual-time approach to discretize the unsteady equations with an implicit time stepping method
for the solution of the steady state problem in pseudo-time [15]. The solution of the large
sparse linear system arising from the implicit time discretization is based on a generalized
conjugate gradient (GCG) method with a block incomplete lower–upper (BILU) factorization
for the preconditioner. This preconditioning strategy allows decoupling of the blocks for the
solution of the linear system, resulting in a very efficient parallel implementation of the
method. A full description of the method can be found in [16,17].

3. GEOMETRIC CONSERVATION LAW

When computing the flow on a moving grid, the cell areas vary in time and it is therefore
important to discretize the time-dependent metrics carefully in order to maintain the conserva-
tive properties of the scheme. If the cell areas are calculated analytically in terms of the grid
node positions, numerical errors will be introduced in the calculated solution, which increase
with time. To avoid such numerical errors, the cell areas must be integrated forward in time
by using the same method as used to solve the flow conservation laws [18]. This is achieved by
introducing a geometric conservation law (GCL), which can be derived from the continuity
conservation law written in integral form by assuming a uniform flow field. This yields

(

(t
&

V
dV−

7
(S
7 ·n dS=0, (3)

where V is the cell area, 7 is the grid speed, n is the normal area vector and (S is the boundary
surface of the control volume V. Using the same second-order time discretization as for the
flow equations [17], Equation (3) becomes
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This law states that the change in area of each control volume between tn and tn+1 must
be equal to the area swept by the cell boundary during Dt= tn+1− tn. The volume Vi,j
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the new time step can then be computed by
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where

7
(S
7 ·n dS= (jt)i+1/2, j− (jt)i−1/2, j+ (ht)i, j+1/2− (ht)i, j−1/2,

and

jt= − (jxxt+jyyt), ht= − (hxxt+hyyt).

Note that this is an explicit equation for Vi,j
n+1 since the terms jt and ht are prescribed

from the node values. Using the GCL to calculate the volumes numerically rather than
analytically yields a self-consistent solution for the effective volume elements. In other
words, it ensures that errors arising from the computation of the geometric quantities are
consistent with those arising from the integration of the flow equations. The impor-
tance of the GCL for flow computations on moving grids has been described in [18–
23]. The GCL needs to be evaluated once at every global time step to calculate the new cell
areas.

4. DEFORMING GRID ALGORITHM FOR MULTI-BLOCK APPLICATIONS

For unsteady computations, the mesh must be deformed once per (real) time step. There-
fore, a fast way of deforming the grid at each time level of the calculation is required. For
simple geometries and simple motions, such as single aerofoils in an oscillating pitching
motion, the grids can be rigidly rotated with the aerofoil. However, for more complex
geometries and motions, such as multi-component aerofoils where the relative motion of the
different components must be taken into account, or when the components themselves are
deforming, it is necessary to regenerate the grid.

In the multi-block approach, the flow domain is split up into blocks and structured grids
are generated in each block with grids in adjacent blocks being matched at common
interfaces. With such an approach, the generation of the grid in each block is made easier
and the overall quality of the mesh is improved.
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By using TFI of displacements, the grid deformation process becomes completely inde-
pendent of the generation of the initial grid, for which any suitable technique can be used.
As well as being fast and simple, an important feature of the deforming grid procedure is
that it must maintain the overall quality of the initial grid by introducing minimal distor-
tion of the cells in the regions where the flow is likely to be changing rapidly. It is
particularly important to keep the grid as rigid as possible in the near-wall regions and
allow cell distortion towards the far-field, or at least in the regions of low gradients where
the flow is not changing rapidly.

Also, for multi-block meshes only the mesh blocks embedding the moving surfaces need
to be deformed at each time level. In some cases, additional blocks, not directly adjacent to
the moving surfaces, may be deformed in order to obtain smoother grids after deformation.

Methods based on the algebraic interpolation of the grid displacements are very attractive
as they generally preserve the overall quality of the initial grid as well as being cheap to
calculate and easy to formulate. Such methods, also referred to as perturbation methods,
have been presented in the literature. In [24,25] the application of a moving grid algorithm
using grid displacements was described for single element aerofoils in oscillating pitching
motion, where only one boundary was allowed to move. In that case, the interpolation of
the displacements across the grid can be performed in one direction only, between the
moving solid boundary (aerofoil or wing surface) and the fixed far-field boundary, by using
an appropriate interpolation function. The choice of adequate control parameters for differ-
ent types of grids with different levels of stretching was also addressed therein. However,
the direction of interpolation is an additional constraint that is not desirable here when
extending the application of the method to multi-block configurations, where the block
topology and the orientation of the blocks are not known a priori. An extension of the
method allowing four moving boundaries and interpolation in each direction is therefore
necessary in order to provide sufficient flexibility and generality. Also, due to the complex-
ity in the block connectivity, and in order to avoid a sequential procedure with unnecessary
communication between blocks, it is preferable to employ a method that can treat all the
blocks independently.

Among the several approaches that were investigated, a method based on the interpola-
tion of the block corner displacements appeared to be the most suitable here. If the
displacement of the block corners is known, then the displacement of the block faces and
then of the interior points within each block can be interpolated. By using the same
interpolation procedure at all block boundary interfaces, the perfect matching of the block
boundaries is guaranteed even if the blocks are treated independently.

The technique employed here to deform the grid in each block is a modified version of
the TFI method based on the grid displacements (see Figure 1). The TFI grid generation
algorithm is a very popular algebraic grid generation technique that effectively interpolates
grid points in the computational domain from prescribed points along the block
boundaries. The algorithm can equally be applied to the grid point displacements by inter-
polating the displacements across the grid from the prescribed or calculated displacements
along the block boundaries. The cost of the mesh regeneration for the current test cases
amounted to less than 0.2% of the total cost for the calculation.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 285–311
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Figure 1. TFI method of perturbations.

5. TFI METHOD OF PERTURBATIONS

5.1. Displacement of the block corners

We first need to determine the displacements of the four block corners (or block vertices)
(Figure 1(b)). In order to identify a moving block from a fixed block, a control parameter is
introduced into the grid file, which is set to 1 for each moving block and to 0 for all fixed
blocks. For each block corner, a search is made over its neighbours, and if at least one of the
neighbouring blocks surrounding this corner point (i.e. all blocks having this point as a vertex)
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is fixed (i.e. block flagged with the control parameter=0), then no displacement is allowed for
this point. Otherwise, the corner point is moved according to the motion of the solid surface.
The displacement of all points lying on a moving surface is assumed known. In the present
work, we consider only rigid motions for oscillating pitching aerofoils and oscillating flaps, but
the application of the method can be easily extended to more complex configurations and more
general deformations [26].

5.2. Displacement of the block faces

The displacements of the four corner points are then used to interpolate the displacement of
all the points along the block boundary (Figure 1(c)). We denote the position vector and
displacement vector associated with the grid points of the mesh by x and dx respectively,

x=
�x(j, h)

y(j, h)
n

, dx=
�dx(j, h)

dy(j, h)
n

.

Let A and B be the two end-points of a block face with displacements denoted by dxA and dxB

respectively. The displacement dx of any point P along this boundary can then be obtained by
the weighted formula

dx=
�

1−
a
c
�

dxA+
�

1−
b
c
�

dxB,

where a=AP
� , b=BP

�  and c=AB
� . Here, the distances are calculated from the previous

grid point co-ordinates. If both end-points are fixed (i.e. zero displacement) then the whole
block face remains fixed.

5.3. Displacement of the interior points

Following the original formulation of the TFI algorithm described by Gordon and Hall [27],
the general TFI method results in a recursive algorithm, which is here applied to the grid point
displacements

dx(j, h)= f1(j, h)+f1
0(h)[dxb1(j)− f1(j, 0)]+f2

0(h)[dxb3(j)− f1(j, 1)],

where

f1(j, h)=c1
0(j) dxb4(h)+c2

0(j) dxb2(h),

and dxb1, dxb2, dxb3 and dxb4 are the interpolated displacements along the four block faces.
The functions c and f are the blending functions in the j- and h-directions respectively. These
functions are given by the grid point distributions along each block face as

c1
0(j)=1−s1(j),

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 285–311



GRID DEFORMATION TECHNIQUE 293

c2
0(j)=s3(j),

f1
0(h)=1−s4(h),

f2
0(h)=s2(h),

where s1(j) is the stretching function on the block face h=0, s2(h) on the block face j=1,
s3(j) on the block face h=1, s4(h) on the block face j=0. The stretching functions are given
by the length of the boundary curve in physical space from the first end-point to the point
under consideration, relative to the total length of the boundary curve, e.g.

s1(j)=
length from A to x(j, 0)

length of curve from A to B
.

The co-ordinates of the new grid points (Figure 1(d)) are then simply obtained by

x(j, h)=x0(j, h)+dx(j, h),

where dx is the interpolated displacement and x0 is the vector position for the initial
undisturbed grid.

6. RESULTS FOR NACA0012 AEROFOIL

6.1. Test case

We present the results obtained using a dual-time method [16,17] for a standard pitching
aerofoil test case selected from the AGARD database [28]. The test case examined here,
referred to as CT2, is for an NACA0012 aerofoil with a free-stream Mach number of 0.6. The
periodic motion of the aerofoil is defined by the angle of attack as a function of time as

a(t)=am+a0 sin(vt), with
!am=3.16°

a0=4.59°
,

where am is the mean incidence, a0 is the amplitude of the pitching oscillation and v is the
angular frequency of the motion, which is related to the reduced frequency k by

k=
vc

2U�
, with k=0.0811,

where c is the aerofoil chord and U� is the free-stream velocity. The aerofoil oscillates about
its quarter chord and the location of the moment centre used to calculate the pitching moment
is xm=0.273.
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The grid used here for the computations is a C-type Euler grid consisting of 128×32 mesh
cells with 96 cells on the aerofoil. The far-field boundary is situated approximately 15 chords
away from the aerofoil surface. The average spacing for the first layer of points from the
aerofoil surface varies between 0.0027, at the leading edge, and 0.010, at the trailing edge.

A grid refinement study was performed in [17] and demonstrated that spatially accurate
results are obtained on this grid. A time step refinement study was also carried out that
showed that 40 steps per cycle could be used to obtain accurate results temporally.

6.2. Effect of grid deformation

In order to investigate the effect of the grid deformation and grid distortion on the solution
accuracy, we first consider a simple problem consisting of an NACA0012 aerofoil where the
grid is partitioned into eight blocks: two layers of four blocks wrapped around the aerofoil,
four inner blocks and four outer blocks. This partitioning of the grid was chosen to allow
different ways of deforming the grid, by allowing either all the blocks to deform or only the
four inner blocks (see Figure 2). In both cases, the results were compared with those obtained
on a rigidly rotating grid.

When all the eight blocks are allowed to deform, the deforming process results in a grid
where the two inner blocks surrounding the aerofoil surface are mainly rotated rigidly (no
distortion is introduced around the aerofoil surface), leaving all the outer blocks to absorb the
deformation. This has the advantage of preserving the good quality of the grid in the aerofoil
region and deforming the grid in the far-field region, where the flow is not changing rapidly.

On the other hand, when only the four inner blocks are allowed to deform (i.e. the four
outer blocks are fixed), all the deformation has to be absorbed by a smaller region, therefore
resulting in a more distorted grid, especially in the near-wall region. Although the grid’s
orthogonality near the aerofoil surface is slightly affected, the general good quality of the
initial grid is preserved through the regeneration process. The two grids are shown here for a
rotation angle of 10° of the aerofoil surface about its quarter chord. The moving blocks are
plotted with solid lines and the fixed blocks are plotted with dotted lines.

These results suggest that if surface deformations can be absorbed over a large enough
region for aeroelastic or free surface applications, then the quality of the grid in the part of the
flow domain which matters most (i.e. close to the surface) will be maintained.

Figure 3 shows a comparison of the results for the AGARD test case CT2 obtained on three
different grids: rotating grid, deforming grid with all the blocks moving and deforming grid
with only the four inner blocks moving. The results were obtained here with 40 time steps per
cycle, and are shown in terms of normal force coefficient and pitching moment coefficient
loops. No large difference in the results can be seen between the three grids, apart from a small
discrepancy between the two deforming grids and the rotating grid as the incidence rises.

Since the two deforming grids (one being distorted around the aerofoil surface, the other one
being mainly rotated rigidly) give similar results, the mismatch in the solutions compared with
the rotating grid is not caused by the distortion of the grid around the aerofoil surface. It is
believed that the discrepancies in the Cn and Cm prediction is caused by the different position
of the wake line (i.e. cut line at the aerofoil trailing edge), which has a different orientation
when the grid is rotated. This may affect the flow solution in the wake region and the pressure
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Figure 2. Deformed grid for the NACA0012 aerofoil: eight moving blocks (top) and four moving blocks
(bottom). Moving blocks are shown with solid lines and fixed blocks with dotted lines.
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Figure 3. Effect of grid deformation on solution accuracy for case CT2.
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at the trailing edge of the aerofoil, therefore causing a small variation of the shock wave
location developing on the upper surface of the aerofoil as the incidence rises.

Another parameter that can effect the quality of the grid is the size of the deforming
region. This effect is investigated here by performing comparisons of the results using
different partitioning of the original eight-block grid, where the number of cells of the inner
blocks and outer blocks in the normal direction are varying such as to produce grids
were the size of the deforming region is changing (see Figure 4). The number of cells in
the streamwise direction is the same for the three grids, only the number of cells in the
normal direction between the inner blocks and the outer blocks are varying. Grid a consists
of 24 cells in the inner block region and eight cells in the outer blocks regions, Grid b
consists of 16 and 16 cells respectively and Grid c consists of eight cells and 24 cells
respectively.

When all the eight blocks are moving, the effect is almost insignificant since the inner
region is mainly rotated rigidly and the outer region is always big enough to absorb
smoothly all the deformations.

On the other hand, the effect can be clearly observed when the outer blocks are fixed
and when only the four inner blocks are moving. In that case, the distance between the
moving boundary (i.e. the aerofoil surface) and the fixed boundary (i.e. the boundary
between the inner blocks and the outer blocks) is varying. When the deforming region is
small (Grid c), the grid is highly stretched and distorted.

Figure 5 shows a comparison of the results for the AGARD test case CT2 for varying
sizes of the deforming region. Here, only the four inner blocks are moving, the four outer
blocks being fixed. No difference in the results is observed between the three grids at low
incidence, but as the incidence rises, the deformation of the grids become more important
and its effect becomes visible. The solution obtained for Grid c (the grid with the smaller
inner region) shows a small departure from the two other solutions, therefore demonstrat-
ing that high distortion of the grid can affect the accuracy of the flow solution.

This shows that it is important to choose a deforming region that is big enough to
ensure that the grid distortion has no significant effect on the flow solution. This will be
further demonstrated in the next section for a multi-element aerofoil problem.

6.3. Effect of GCL

The effect of the GCL on the solution accuracy when using deforming grids is shown in
Figure 6 in terms of normal force coefficient and pitching moment coefficient loops. The
results were obtained on the eight-block grid with the four inner blocks deforming and the
four outer blocks being fixed. Comparison of the Cn and Cm with the results obtained when
computing the cell areas algebraically shows no significant difference in the solution accu-
racy even when using very large time steps. The results are plotted here for ten steps per
cycle.

The difference between the GCL and the algebraic computation of the cell areas is small
despite the large time step employed, therefore indicating that the grid deformation tech-
nique employed here does not produce significant distortion of the mesh cells.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 285–311
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Figure 4. Varying size of the deforming region: Grid a (top), Grid b (middle) and Grid c (bottom).
Moving blocks are shown with solid lines and fixed blocks with dotted lines.
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Figure 5. Effect of the size of the deformation region on solution accuracy for case CT2.
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Figure 6. Effect of the GCL solution accuracy for case CT2.
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7. MULTI-ELEMENT DEMONSTRATION: WILLIAMS AEROFOIL

In order to demonstrate the performance of the method for a genuinely multi-block case, we
consider here a demonstration case for the Williams aerofoil (Configuration B) [29] with an
oscillating flap. The free-stream Mach number for this test case is M�=0.58. Several test
cases were considered for this configuration with various amplitudes for the flap deflection up
to 14°. The mesh consists of 15 blocks with 11228 grid points (10367 mesh cells). The original
undeformed grid for the Williams aerofoil is shown in Figure 7, together with the block
topology and the block numbering. The blocks that are allowed to deform are selected by the
user by means of a graphical interface. The choice is made to retain the overall quality of the
grid. For this particular problem, a minimum of four moving blocks for very small flap
deflections and up to a maximum of 12 moving blocks for larger amplitudes (over 10°) were
considered. Figures 8 and 9 show a close up view of the flap region for various combinations
of deforming blocks. The deformed grids are shown here for a flap deflection of 14°. When
only the blocks adjacent to the moving surface (i.e. oscillating flap) are deforming, the local
distortion is important where the flap motion is biggest at the trailing edge. Some extra
distortion of the grid towards the leading edge of the flap is incurred when block 5 is allowed
to deform since this alters the point distribution along the boundary between blocks 4 and 5.
However, the change in point distribution along the boundary between blocks 4 and 5 allows
the grid quality to be maintained in the area of largest flap movement, at the flap trailing edge.
This again suggests that for large and general motions, allowing the boundary changes to be
absorbed over a large region of the grid is the best strategy.

We present here the results obtained for an oscillating flap, where the periodic motion of the
flap is defined by its deflection angle as

a(t)=am+a0 sin(vt), with
!am=7.0°

a0=7.0°
,

where am is the mean incidence, a0 is the amplitude of the flap oscillation and k=vc/2U�=
0.0814 is the reduced frequency. The deflection of the flap is counted with respect to its
position for the original Williams aerofoil (Configuration B), counted positive when the flap is
deflected nose up and negative when deflected nose down. The flap is rigidly rotated about the
point situated in front of its leading edge with co-ordinates x=0.98 and y= −0.07, where the
non-dimensionalization is defined here with respect to the chord of the main aerofoil.

An initial solution was first obtained by solving a steady state problem at the mean
deflection angle and the flap was then set in motion to solve the unsteady problem for the
oscillating flap. The calculations are continued until a periodic solution is obtained, usually
after two or three cycles.

The results are shown in Figure 10 in terms of lift coefficient and pitching moment
coefficient calculated about the quarter-chord of the main aerofoil. Results are shown here for
various combinations of moving blocks. As expected, the solution obtained with the minimum
number of deforming blocks is slightly different from the three other combinations, due to the
greater local distortion generated in the near flap region. However, consistent results are
obtained on all grids. Comparison of the solution between GCL and algebraic computation of
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Figure 7. Multi-block grid for the original Williams aerofoil (top) and grid topology and block
numbering (bottom).
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Figure 8. Deformed grid for the Williams aerofoil: six moving blocks (top) and eight moving blocks
(bottom). Moving blocks are shown with solid lines and fixed blocks with dotted lines.
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Figure 9. Deformed grid for the Williams aerofoil: ten moving blocks (top) and 12 moving blocks
(bottom). Moving blocks are shown with solid lines and fixed blocks with dotted lines.
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Figure 10. Williams aerofoil: lift coefficient (top) and pitching moment coefficient (bottom).
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Figure 11. Pressure distribution for Williams aerofoil with oscillating flap.
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the cell areas showed no difference at all for this particular problem even for very large time
steps, further highlighting the good properties of the grid deforming technique employed here.
The results are plotted here for 40 steps per cycle.

Figure 11 show the corresponding Cp distributions at four different deflection angles during
the cycle. As the flap is deflected downward (nose up), the shock wave located on the upper
surface of the main aerofoil moves downstream and the pressure plateau upstream of the
shock increases slightly, resulting in a significant increase of lift. At maximum flap deflection
(14°), the shock is located at approximately 70% of the main aerofoil chord, whereas at
minimum deflection (corresponding to a zero deflection angle), the shock is situated at about
50% chord. The Cp distributions also show that the extra lift generated by the flap itself
increases significantly as the flap moves downward (nose up). For this particular test case, the
lift coefficient varies by about 920% during the cycle.

Figure 12 shows some pressure contours at four different angles, showing clearly the
displacement of the strong shock wave on the upper surface of the main aerofoil.

8. CONCLUSIONS

A method for grid deformation is described. This method, based on the TFI of the
displacement of block boundaries, provides an efficient way of deforming the grid during
an unsteady flow calculation. The method is flexible and is independent of the initial grid
generation. Good quality grids have been obtained for two types of inviscid test case,
including an aerofoil oscillating in pitch and a multi-element aerofoil with an oscillating
flap.

The general results obtained for these test cases have shown that the deformation of the
grid has no significant effect on the solution accuracy when compared with a rigidly
rotating grid, therefore suggesting that the grid deformation technique employed here and
based on a TFI algorithm is a suitable approach to handle deforming grids for similar
cases. The test cases indicated that the interpolation effectively rotates the grid points close
to the moving surface if the movement is absorbed over a large region in the overall grid.
This property is desirable when considering more general aeroelastic or free surface
motions.

A GCL was incorporated into the flow solver but was found to have no significant
effect, even for very large time steps.

Extensions of this work involve evaluating the method for viscous calculations and for
more general motions (e.g. deforming aerofoils). Current applications of the method include

� aeroelastic problems,
� free surface problems,
� grid treatment for icing problems,
� regeneration of grids for different aerofoils based on a high quality grid for a different

aerofoil,
� dynamic design optimization.
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Figure 12. Pressure contours for Williams aerofoil with oscillating flap.
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APPENDIX A. NOMENCLATURE

aerofoil chordc
pitching moment coefficientCm

Cn normal force coefficient
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pressure coefficientCp

Displacement vectordx
E specific total energy

Interpolation functionf1

convective fluxesF, G
k reduced frequency

free-stream Mach numberM�

normal vectorn
p static pressure

flux residualRi,j

stretching functions
t time

Cartesian velocity componentsu, 6
contravariant velocitiesU, V
free-stream velocityU�
cell volumeVi,j

velocity vector7

vector of conservative variablesW
position vectorx
Cartesian co-ordinatesx, y
moment centrexm

grid speedsxt, yt

Greek letters
angle of attacka

am mean angle
amplitude of oscillationa0

real time stepDt
h, j generalized co-ordinates

angular frequencyv

densityr

F,C blending functions
control volumeV
boundary surfaceS

Subscripts
computational celli, j

� free-stream conditions
t time derivative

spatial derivativesx, y
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Superscripts
n time level of the approximation in real time
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